5,147 research outputs found

    Is Vacuum Decay Significant in Ekpyrotic and Cyclic Models?

    Full text link
    It has recently been argued that bubble nucleation in ekpyrotic and cyclic cosmological scenarios can lead to unacceptable inhomogeneities unless certain constraints are satisfied. In this paper we show that this is not the case. We find that bubble nucleation is completely negligible in realistic models.Comment: 3 pages, 1 figure, minor revision

    Renormalization of thermal conductivity of disordered d-wave superconductors by impurity-induced local moments

    Full text link
    The low-temperature thermal conductivity \kappa_0/T of d-wave superconductors is generally thought to attain a "universal" value independent of disorder at sufficiently low temperatures, providing an important measure of the magnitude of the gap slope near its nodes. We discuss situations in which this inference can break down because of competing order, and quasiparticle localization. Specifically, we study an inhomogeneous BCS mean field model with electronic correlations included via a Hartree approximation for the Hubbard interaction, and show that the suppression of \kappa_0/T by localization effects can be strongly enhanced by magnetic moment formation around potential scatterers.Comment: 2 pages, 1 figure, submitted to M2S-HTSC VIII, Dresden 200

    Common gauge origin of discrete symmetries in observable sector and hidden sector

    Full text link
    An extra Abelian gauge symmetry is motivated in many new physics models in both supersymmetric and nonsupersymmetric cases. Such a new gauge symmetry may interact with both the observable sector and the hidden sector. We systematically investigate the most general residual discrete symmetries in both sectors from a common Abelian gauge symmetry. Those discrete symmetries can ensure the stability of the proton and the dark matter candidate. A hidden sector dark matter candidate (lightest U-parity particle or LUP) interacts with the standard model fields through the gauge boson Z', which may selectively couple to quarks or leptons only. We make a comment on the implications of the discrete symmetry and the leptonically coupling dark matter candidate, which has been highlighted recently due to the possibility of the simultaneous explanation of the DAMA and the PAMELA results. We also show how to construct the most general U(1) charges for a given discrete symmetry, and discuss the relation between the U(1) gauge symmetry and R-parity.Comment: Version to appear in JHE

    A visibility-based lower bound for android unlock patterns

    Get PDF
    The Android pattern unlock is a widely adopted graphical password system that requires a user to draw a secret pattern connecting points arranged in a grid. The theoretical security of pattern unlock can be defined by the number of possible patterns. However, only upper bounds of the number of patterns have been known except for 3��3 and 4��4 grids for which the exact number of patterns was found by brute-force enumeration. In this letter, we present the first lower bound by computing the minimum number of visible points from each point in various subgrids. ? 2017 The Institute of Electronics, Information and Communication Engineers.11Ysciescopu

    The cleavage of biglycan by aggrecanases

    Get PDF
    SummaryObjectiveAggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4] and aggrecanase-2 (ADAMTS-5) have been named for their ability to degrade the proteoglycan aggrecan. While this may be the preferred substrate for these enzymes, they are also able to degrade other proteins. The aim of this work was to determine whether the aggrecanases could degrade biglycan and decorin.MethodsBiglycan, decorin and aggrecan were purified from human and bovine cartilage and subjected to degradation by recombinant aggrecanase-1 or aggrecanase-2. In vitro degradation was assessed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) and immunoblotting, and the cleavage site in biglycan was determined by N-terminal amino acid sequencing. SDS/PAGE and immunoblotting were also used to assess in situ degradation in both normal and arthritic human articular cartilage.ResultsBoth aggrecanase-1 and aggrecanase-2 are able to cleave bovine and human biglycan at a site within their central leucine-rich repeat regions. Cleavage occurs at an asparagine–cysteine bond within the fifth leucine-rich repeat. In contrast, the closely related proteoglycan decorin is not a substrate for the aggrecanases. Analysis of human articular cartilage from osteoarthritic (OA) and rheumatoid arthritic (RA) joints showed that a biglycan degradation product of equivalent size is present in the extracellular matrix. No equivalent degradation product was, however, detectable in normal adult human articular cartilage.ConclusionBiglycan, which is structurally unrelated to aggrecan, can act as a substrate for aggrecanase-1 and aggrecanase-2, and these proteinases may account for at least part of the biglycan degradation that is present in arthritic cartilage

    Finite nuclear size effect on Lamb shift of s1/2, p1/2, and p3/2 atomic states

    Full text link
    We consider one-loop self-energy and vacuum polarization radiative corrections to the shift of atomic energy level due to finite nuclear size. Analytic expressions for vacuum polarization corrections are derived. For the self-energy of p1/2 and p3/2 states in addition to already known terms we derive next-to-leading nonlogarithmic Z\alpha-terms. Together with contributions obtained earlier the terms derived in the present work give explicit analytic expressions for s1/2 and p1/2 corrections which agree with results of previous numerical calculations up to Z=100 (Z is the nuclear charge number). We also show that the finite nuclear size radiative correction for a p3/2 state is not small compared to the similar correction for a p1/2 state at least for small Z.Comment: 12 pages, 7 figure

    Foreword

    Get PDF

    High speed video capture for mobile phone cameras

    Get PDF
    We consider an electromechanical model for the operation of a voice coil motor in a mobile phone camera, with the aim of optimizing how a lens can be moved to a desired focusing motion. Although a methodology is developed for optimizing lens shift, there is some concern about the experimentally-determined model parameters that are at our disposal. Central to the model is the value of the estimated magnetic force constant, Kf: its value determines how far it is actually possible to move lens, but it appears that, from the value given, it would not be possible to shift the lens through the displacements desired. Furthermore, earlier experiments have also estimated the value of the back EMF constant, Kg , to be roughly five times greater than Kf, even though we present two theoretical arguments that show that Kf = Kg: a conclusion supported by readily-available manufacturers’ data

    On Four-Point Functions of Half-BPS Operators in General Dimensions

    Full text link
    We study four-point correlation functions of half-BPS operators of arbitrary weight for all dimensions d=3,4,5,6 where superconformal theories exist. Using harmonic superspace techniques, we derive the superconformal Ward identities for these correlators and present them in a universal form. We then solve these identities, employing Jack polynomial expansions. We show that the general solution is parameterized by a set of arbitrary two-variable functions, with the exception of the case d=4, where in addition functions of a single variable appear. We also discuss the operator product expansion using recent results on conformal partial wave amplitudes in arbitrary dimension.Comment: The discussion of the case d=6 expanded; references added/correcte
    corecore